By Topic

Differential Near-Field Scanning Optical Microscopy Using Sensor Arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

In this paper, we introduce a new aperture-type near-Held scanning optical microscopy (NSOM) imaging concept that relies on specially designed large-area (e.g. >200 nm times 200 nm) aperture geometries having sharp corners. Unlike in conventional NSOM, the spatial resolution of this near-field imaging modality is not determined by the size of the aperture, but rather by the sharpness of the corners of the large aperture. This approach significantly improves the light throughput of the near-field probe and, hence, increases the SNR. Here, we discuss the basic concepts of this near-field microscopy approach and illustrate both theoretically and experimentally how an array of detectors can be utilized to further improve the SNR of the near-field image. The results of this work are particularly relevant for imaging of biological samples at a spatial resolution of < 50 nm with significantly improved image quality.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:13 ,  Issue: 6 )