By Topic

Spectroscopic Optical Coherence Tomography and Microscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Oldenburg, A.L. ; Univ. of Illinois at Urbana-Champaign, Urbana ; Chenyang Xu ; Boppart, S.A.

Imaging biological tissues using optical coherence tomography is enhanced with spectroscopic analysis, providing new metrics for functional imaging. Recent advances in spectroscopic optical coherence tomography (SOCT) include techniques for the discrimination of endogenous tissue types and for the detection of exogenous contrast agents. In this paper, we review these techniques and their associated signal processing algorithms, while highlighting their potential for biomedical applications. We unify the theoretical framework for time- and frequency-domain SOCT and introduce a noise correction method. Differences between spectroscopic Mie scatterers are demonstrated with SOCT, and spectroscopic imaging of macrophage and fibroblast cells in a 3-D scaffold is shown.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:13 ,  Issue: 6 )