Cart (Loading....) | Create Account
Close category search window
 

Trapping and Manipulation of Biological Particles Through a Plasmonic Platform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaoyu Miao ; Univ. of Washington, Seattle ; Lin, Lih Y.

Enhanced optical radiation force can be induced through the resonant scattering field from a single plasmonic nanoparticle or a randomly distributed plasmonic nanoparticle array. In this paper, we utilized the dipole approximation for the Mie scattering field to analyze such radiation force in both far-field and near-field regime. This force can be utilized to develop noninvasive probes for trapping and manipulation of single biological particles. The trapping of single yeast cells is also demonstrated as an application of this approach.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:13 ,  Issue: 6 )

Date of Publication:

Nov.-dec. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.