Cart (Loading....) | Create Account
Close category search window
 

Photonic microwave harmonic generator driven by an optoelectronic ring oscillator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Duran, M.V. ; MOSE Group SUPAERO, Toulouse ; Le Kernec, A. ; Mollier, J.

We describe a new architecture to generate microwave signals by optical means. Our system combines the advantages of two techniques: frequency multipliers and loop oscillators. A frequency multiplier allows to obtain high frequencies using frequency harmonic generation, nevertheless, a very good quality reference signal is necessary to drive the system. In our setup, this reference signal is obtained using a loop oscillator. Optoelectronic loop oscillators generate signals with good performance in terms of phase noise and linewidth. We present the theory related to those techniques and the experimental data obtained.

Published in:

Microwave and Optoelectronics Conference, 2007. IMOC 2007. SBMO/IEEE MTT-S International

Date of Conference:

Oct. 29 2007-Nov. 1 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.