Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Automatic Identification of Return of Spontaneous Circulation During Cardiopulmonary Resuscitation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The main problem during pulse check in out-of-hospital cardiac arrest is the discrimination between normal pulse-generating rhythm (PR) and pulseless electrical activity (PEA). It has been suggested that circulatory information can be acquired by measuring the thoracic impedance via the defibrillator pads. To investigate this, we performed an experimental study where we retrospectively analyzed 127 PEA segments and 91 PR segments out of 219 and 113 segments. A PEA versus PR classification framework was developed, that uses short segments (< 10 s) of ECG and impedance measurements to discriminate between the two rhythms. Using realistic data analyzed over a duration of 3 s, our system correctly identifies 90.0% of the segments with rhythm being pulseless electrical activity, and 91.5% of the normal pulse rhythm segments. Automatic identification of pulse could avoid unnecessary pulse checks and thereby reduce no-flow time and potentially increase the chance of survival.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:55 ,  Issue: 1 )