By Topic

Removal of CPR Artifacts From the Ventricular Fibrillation ECG by Adaptive Regression on Lagged Reference Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Removing cardiopulmonary resuscitation (CPR)-related artifacts from human ventricular fibrillation (VF) electrocardiogram (ECG) signals provides the possibility to continuously detect rhythm changes and estimate the probability of defibrillation success. This could reduce ldquohands-offrdquo analysis times which diminish the cardiac perfusion and deteriorate the chance for successful defibrillations. Our approach consists in estimating the CPR part of a corrupted signal by adaptive regression on lagged copies of a reference signal which correlate with the CPR artifact signal. The algorithm is based on a state-space model and the corresponding Kalman recursions. It allows for stochastically changing regression coefficients. The residuals of the Kalman estimation can be identified with the CPR-filtered ECG signal. In comparison with ordinary least-squares regression, the proposed algorithm shows, for low signal-to-noise ratio (SNR) corrupted signals, better SNR improvements and yields better estimates of the mean frequency and mean amplitude of the true VF ECG signal. The preliminary results from a small pool of human VF and animal asystole CPR data are slightly better than the results of comparable previous studies which, however, not only used different algorithms but also different data pools. The algorithm carries the possibility of further optimization.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:55 ,  Issue: 1 )