By Topic

A Markov Decision Problem Approach to Goal Attainment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

A new Markov decision problem (MDP)-based method for managing goal attainment (GA), which is the process of planning and controlling actions that are related to the achievement of a set of defined goals in the presence of resource and time constraints, is proposed. Specifically, we address the problem as one of optimally selecting a sequence of actions to transform the system and/or its environment from an initial state to a desired state. We begin with a method of explicitly mapping an action-GA graph to an MDP graph and developing a dynamic programming (DP) recursion to solve the MDP problem. For larger problems having exponential complexity with respect to the number of goals, we propose guided search algorithms such as AO*, AOepsiv*, and greedy search techniques, whose search power rests on the efficiency of their heuristic evaluation functions (HEFs). Our contribution in this part stems from the introduction of a new problem-specific HEF to aid the search process. We demonstrate reductions in the computational costs of the proposed techniques through performance comparison with standard DP techniques. We conclude this paper with a method to address situations in which alternative strategies (e.g., second best) are required. The new extended AO* algorithm identifies alternative control sequences for attaining the organizational goals.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:38 ,  Issue: 1 )