By Topic

Convergence and limit points of neural network and its application to pattern recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Han, J.Y. ; Dept. of Electr. Eng., Southern Illinois Univ., Carbondale, IL, USA ; Sayeh, M.R. ; Zhang, J.

A novel neural network model, based on the gradient system theory, is introduced. The proposed design approach solves the problem of parasitic limit points. This could have significant impact on many potential applications, particularly in the area of pattern classification/recognition. The design approach, the development of the Lyapunov function, the stability analysis, and the convergence characteristics of the neural network are discussed in detail. Design examples and simulation results are presented to illustrate the design process and the convergence characteristics of the proposed neural network. One example shows its application in pattern recognition

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:19 ,  Issue: 5 )