By Topic

Energy and Bandwidth-Efficient Key Distribution in Wireless Ad Hoc Networks: A Cross-Layer Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Salido, J. ; Microsoft Corp., Redmond ; Lazos, L. ; Poovendran, R.

We address the problem of resource-efficient access control for group communications in wireless ad hoc networks. Restricting the access to group data can be reduced to the problem of securely distributing cryptographic keys to group members, known as the key distribution problem (KDP). We examine the KDP under four metrics: (a) member key storage, (b) group controller (GC) transmissions, (c) multicast group (MG) update messages, and (d) average update energy. For each metric, we formulate an optimization problem and show that the KDP has unique solutions for metrics (a) and (b), while is NP-complete for (c) and (d). We propose a cross-layer heuristic algorithm called VP3 that bounds member key storage, and GC transmissions, while significantly reducing the energy and bandwidth consumption of the network. We define the notion of path divergence as a measure of bandwidth efficiency of multicasting, and establish an analytical worst-case bound for it. Finally, we propose on-line VP3, which dynamically updates the key assignment structure according to the dynamics of the communication group in a resource-efficient way.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:15 ,  Issue: 6 )