By Topic

A Speech Endpoint Detection Algorithm Based on Entropy and RBF Neural Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xueying Zhang ; Taiyuan Univ. of Technol., Taiyuan ; Gaoyun Li ; Feng Qiao

Speech endpoint detection is an important step in the field of speech analysis, speech synthesis and speech recognition. This paper proposed an endpoint detection algorithm, which used amplitude entropy, spectral entropy and frame energy as feature parameters and utilized RBF neural network as a feature classification system. 170 sentences are used as testing data to detect speech endpoint, which length is from 4 second to 7 second. The experiments show that the testing results using RBF neural network are better than that using entropy alone or BP neural network based on entropy.

Published in:

Granular Computing, 2007. GRC 2007. IEEE International Conference on

Date of Conference:

2-4 Nov. 2007