By Topic

Analyzing Software System Quality Risk Using Bayesian Belief Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hu Yong ; Guangdong Univ. of Foreign Studies, Guangdong ; Chen Juhua ; Jiaxing Huang ; Mei Liu
more authors

Uncertainty during the period of software project development often brings huge risks to contractors and clients. Developing an effective method to predict the cost and quality of software projects based on facts such as project characteristics and two-side cooperation capability at the beginning of the project can aid us in finding ways to reduce the risks. Bayesian belief network (BBN) is a good tool for analyzing uncertain consequences, but it is difficult to produce precise network structure and conditional probability table. In this paper, we build up the network structure by Delphi method for conditional probability table learning, and learn to update the probability table and confidence levels of the nodes continuously according to application cases, which would subsequently make the evaluation network to have learning abilities, and to evaluate the software development risks in organizations more accurately. This paper also introduces the EM algorithm to enhance the ability in producing hidden nodes caused by variant software projects.

Published in:

Granular Computing, 2007. GRC 2007. IEEE International Conference on

Date of Conference:

2-4 Nov. 2007