By Topic

Modeling and Experimental Verification of the Dynamic Interaction of an AFM-Tip With a Photonic Crystal Microcavity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Hopman, W.C.L. ; MESA+ Inst. for Nanotechnol., Univ. of Twente, Enschede, Netherlands ; van der Werf, Kees O. ; Hollink, A.J.F. ; Bogaerts, W.
more authors

We present a transmission model for estimating the effect of the atomic-force microscopy tapping tip height on a photonic crystal microcavity (MC). This model uses a fit of the measured tip-height-dependent transmission above a ¿hot spot¿ in the MC. The predicted transmission versus average tapping height is in good agreement with the values obtained from tapping mode experiments. Furthermore, we show that for the existing, nonoptimized structure, the transmission coefficient can be tuned between 0.32 and 0.8 by varying the average tapping height from 26 to 265 nm. A transmission larger than that of the undisturbed cavity at resonance was observed at specific tip locations just outside the cavity-terminating holes.

Published in:

Photonics Technology Letters, IEEE  (Volume:20 ,  Issue: 1 )