Cart (Loading....) | Create Account
Close category search window
 

Micromachined Accelerometers With Optical Interferometric Read-Out and Integrated Electrostatic Actuation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)

A micromachined accelerometer device structure with diffraction-based optical detection and integrated electrostatic actuation is introduced. The sensor consists of a bulk silicon proof mass electrode that moves vertically with respect to a rigid diffraction grating backplate electrode to provide interferometric detection resolution of the proof-mass displacement when illuminated with coherent light. The sensor architecture includes a monolithically integrated electrostatic actuation port that enables the application of precisely controlled broadband forces to the proof mass while the displacement is simultaneously and independently measured optically. This enables several useful features such as dynamic self-characterization and a variety of force-feedback modalities, including alteration of device dynamics in situ. These features are experimentally demonstrated with sensors that have been optoelectronically integrated into sub-cubic-millimeter volumes using an entirely surface-normal, rigid, and robust embodiment incorporating vertical cavity surface emitting lasers and integrated photodetector arrays. In addition to small form factor and high acceleration resolution, the ability to self-characterize and alter device dynamics in situ may be advantageous. This allows periodic calibration and in situ matching of sensor dynamics among an array of accelerometers or seismometers configured in a network.

Published in:

Microelectromechanical Systems, Journal of  (Volume:17 ,  Issue: 1 )

Date of Publication:

Feb. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.