By Topic

A new exact closest lattice point search algorithm using linear constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Weiyu Xu ; California Inst. of Technol., Pasadena ; Hassibi, B.

The problem of finding the closest lattice point arises in several communications scenarios and is known to be NP-hard. We propose a new closest lattice point search algorithm which utilizes a set of new linear inequality constraints to reduce the search of the closest lattice point to the intersection of a polyhedron and a sphere. This set of linear constraints efficiently leverage the geometric structure of the lattice to reduce considerably the number of points that must be visited. Simulation results verify that this algorithm offers substantial computational savings over standard sphere decoding when the dimension of the problem is large.

Published in:

Signal Processing Advances in Wireless Communications, 2007. SPAWC 2007. IEEE 8th Workshop on

Date of Conference:

17-20 June 2007