By Topic

Sample size cognizant detection of signals in white noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nadakuditi, R.R. ; Massachusetts Inst. of Technol., Cambridge ; Edelman, A.

The detection and estimation of signals in noisy, limited data is a problem of interest to many scientific and engineering communities. We present a computationally simple, sample eigenvalue based procedure for estimating the number of high-dimensional signals in white noise when there are relatively few samples. We highlight a fundamental asymptotic limit of sample eigenvalue based detection of weak high-dimensional signals from a limited sample size and discuss its implication for the detection of two closely spaced signals. This motivates our heuristic definition of the effective number of identifiable signals. Numerical simulations are used to demonstrate the consistency of the algorithm with respect to the effective number of signals and the superior performance of the algorithm with respect to Wax and Kailath's "asymptotically consistent" MDL based estimator.

Published in:

Signal Processing Advances in Wireless Communications, 2007. SPAWC 2007. IEEE 8th Workshop on

Date of Conference:

17-20 June 2007