By Topic

Second generation wavelet transform for data denoising in PD measurement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiaodi Song ; Glasgow Caledonian Univ., Glasgow ; Chengke Zhou ; Hepburn, D.M. ; Guobin Zhang
more authors

Detection and diagnosis of partial discharge (PD) activity has been widely adopted in electrical plant condition monitoring. Analysis and detection of PD in practical applications is often hampered by noise in the signal. Recent research has shown that the discrete wavelet transform (DWT) is effective in extracting PD pulses from severe noise. One disadvantage, however, is that DWT does not reproduce accurate PD pulse magnitude and pulse shape after thresholding in the presence of strong noise. This paper presents the application of the second generation wavelet transform (SGWT), as an improved algorithm, to extraction of PD pulse from electrical noise. The paper begins with the description of the fundamental theory and structure of SGWT analysis and comparisons with DWT. The method is then applied to both simulated and real world PD data. Results prove that SGWT can significantly improve the effectiveness of PD denoising.

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:14 ,  Issue: 6 )