Cart (Loading....) | Create Account
Close category search window
 

Modified Pulse-Adjustment Technique to Control DC/DC Converters Driving Variable Constant-Power Loads

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Khaligh, A. ; Illinois Inst. of Technol., Chicago ; Rahimi, A.M. ; Emadi, A.

Multiconverter-distributed DC architectures have been utilized for power distribution in many applications such as telecommunication systems, sea and undersea vehicles, an international space station, aircraft, electric vehicles, hybrid-electric vehicles, and fuel-cell vehicles, where reliability is of prime concern. The number of power-electronic converters (AC/DC, DC/DC, DC/AC, and AC/AC) in these multiconverter electrical power systems varies from a few converters in a conventional land vehicle, to tens of converters in an advanced aircraft, and to hundreds of converters in the international space station. In these advanced applications, power-electronic converters might need to have a tight output-voltage regulation. From the output perspective, this property is highly desirable. However, since power-electronic converters are efficient, tight regulation of the output makes the converter appear as a constant-power load (CPL) at its input side. Dynamic behavior of CPLs is equivalent to negative impedance and, therefore, can result in instability of the interconnected power system. In order to mitigate the instability of the power converters loaded by CPLs, this paper presents the pulse-adjustment digital control technique. It is simple and easy to implement in application-specific integrated circuits, digital-signal processors, or field-programmable gate arrays. Moreover, its dynamic response is fast and robust. Line and load regulations are simply achievable using this technique. Analytical, as well as simulation and experimental results of applying the proposed method to a DC/DC buck-boost converter confirm the validity of the presented technique.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:55 ,  Issue: 3 )

Date of Publication:

March 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.