By Topic

Individualized Short-Term Core Temperature Prediction in Humans Using Biomathematical Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gribok, A.V. ; U.S. Army Med. Res. & Materiel Command (USAMRMC), Fort Detrick ; Buller, M.J. ; Reifman, J.

This study compares and contrasts the ability of three different mathematical modeling techniques to predict individual-specific body core temperature variations during physical activity. The techniques include a first-principles, physiology-based (SCENARIO) model, a purely data-driven model, and a hybrid model that combines first-principles and data-driven components to provide an early, short-term (20-30 min ahead) warning of an impending heat injury. Their performance is investigated using two distinct datasets, a field study and a laboratory study. The results indicate that, for up to a 30 min prediction horizon, the purely data-driven model is the most accurate technique, followed by the hybrid. For this prediction horizon, the first-principles SCENARIO model produces root mean square prediction errors that are twice as large as those obtained with the other two techniques. Another important finding is that, if properly regularized and developed with representative data, data-driven and hybrid models can be made ldquoportablerdquo from individual to individual and across studies, thus significantly reducing the need for collecting developmental data and constructing and tuning individual-specific models.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:55 ,  Issue: 5 )