By Topic

Efficient Subspace-Based Estimator for Localization of Multiple Incoherently Distributed Sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zoubir, A. ; Univ. of Nantes, Nantes ; Yide Wang ; Charge, P.

In this paper, a new subspace-based algorithm for parametric estimation of angular parameters of multiple incoherently distributed sources is proposed. This approach consists of using the subspace principle without any eigendecomposition of the covariance matrix, so that it does not require the knowledge of the effective dimension of the pseudosignal subspace, and therefore the main difficulty of the existing subspace estimators can be avoided. The proposed idea relies on the use of the property of the inverse of the covariance matrix to exploit approximately the orthogonality property between column vectors of the noise-free covariance matrix and the sample pseudonoise subspace. The resulting estimator can be considered as a generalization of the Pisarenko's extended version of Capon's estimator from the case of point sources to the case of incoherently distributed sources. Theoretical expressions are derived for the variance and the bias of the proposed estimator due to finite sample effect. Compared with other known methods with comparable complexity, the proposed algorithm exhibits a better estimation performance, especially for close source separation, for large angular spread and for low signal-to-noise ratio.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 2 )