Cart (Loading....) | Create Account
Close category search window

Reduced-complexity UWB time-reversal techniques and experimental results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nan Guo ; Tennessee Technol. Univ. (TTU), Cookeville ; Sadler, B.M. ; Qiu, R.C.

This paper presents a reduced-complexity time reversal technique for ultra-wideband (UWB) communications. Time reversal takes advantage of rich scattering environments to achieve signal focusing via transmitter-side processing, which enables the use of simple receivers. The goal of this paper is to demonstrate a UWB time reversal system architecture based on experimental results and practical pulse waveform, taking into account some practical constraints, and to show feasibility of UWB time reversal. Pre-decorrelating in addition to time reversal processing is considered for a downlink multiuser configuration. Multiple transmit antennas are employed to improve the performance.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:6 ,  Issue: 12 )

Date of Publication:

December 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.