By Topic

Optimized Address Assignment With Array and Loop Transformations for Minimizing Schedule Length

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xue, C.J. ; City Univ. of Hong Kong, Kowloon ; Zhiping Jia ; Zili Shao ; Meng Wang
more authors

Reducing address arithmetic operations by optimization of address offset assignment greatly improves the performance of digital signal processor (DSP) applications. However, minimizing address operations alone may not directly reduce code size and schedule length for DSPs with multiple functional units. Little research work has been conducted on loop optimization with address offset assignment problem for architectures with multiple functional units. In this paper, we combine loop scheduling, array interleaving, and address assignment to minimize the schedule length and the number of address operations for loops on DSP architectures with multiple functional units. Array interleaving is applied to optimize address assignment for arrays in loop scheduling process. An algorithm, address operation reduction rotation scheduling (AORRS), is proposed. The algorithm minimizes both schedule length and the number of address operations. with to list scheduling, AORRS shows an average reduction of 38.4% in schedule length and an average reduction of 31.7% in the number of address operations. Compared with rotation scheduling, AORRS shows an average reduction of 15.9% in schedule length and 33.6% in the number of address operations.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:55 ,  Issue: 1 )