By Topic

Extending a Fixed-Complexity Sphere Decoder to Obtain Likelihood Information for Turbo-MIMO Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Barbero, L.G. ; Inst. of Electron., Queen''s Univ. of Belfast, Belfast ; Thompson, J.S.

A list extension for a fixed-complexity sphere decoder (FSD) to perform iterative detection and decoding in turbo-multiple input-multiple output (MIMO) systems is proposed in this paper. The algorithm obtains a list of candidates that can be used to calculate likelihood information about the transmitted bits required by the outer decoder. The list FSD (LFSD) overcomes the two main problems of the list sphere decoder (LSD), namely, its variable complexity and the sequential nature of its tree search. It combines a search through a very small subset of the complete transmit constellation and a specific channel matrix ordering to approximate the soft- quality of the list of candidates obtained by the LSD. A simple method is proposed to generate that subset, extending the subset searched by the original FSD. Simulation results show that the LFSD can be used to approach the performance of the LSD while having a lower and fixed complexity, making the algorithm suitable for hardware implementation.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:57 ,  Issue: 5 )