By Topic

Performance Analysis of Blind Adaptive MOE Multiuser Receivers Using Inverse QRD-RLS Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ayman Elnashar ; Etihad Etisalat, Riyadh ; Said Elnoubi ; Hamdi A. El-Mikati

The inverse QR (IQRD) recursive least-squares (RLS) algorithm (IQRD-RLS) is very popular because it has good numerical stability and can be mapped onto COordinate Rotation DIgital Computer (CORDIC) processor-based systolic arrays, which are suitable for very large-scale integrated circuits (VLSI) architecture and real-time applications. In this paper, the blind optimal minimum output energy (MOE) detector which is developed for multiuser detection (MUD) in direct-sequence code-division multiple-access (DS-CDMA) systems is implemented using the linearly constrained IQRD-RLS algorithm. Specifically, the max/min approach is combined with subspace tracking for producing the optimal MOE multiuser detector. A new fast subspace tracking algorithm based on Lagrange multiplier methodology and the IQRD-RLS algorithm is developed. A comparative analysis among the recently emerged channel-estimation techniques is conducted using the IQRD-RLS algorithm. The corresponding robust MOE receivers at low SNR are implemented using the IQRD method, and their performances are assessed in terms of SINR, BER, and computational complexity. A robust multiuser receiver is developed by adding a quadratic inequality constraint to the optimal max/min MOE detector. The feasibility of systolic array implementation of the IQRD-based optimal MOE detector is explored. Several simulation experiments are conducted in a severe near-far environment to analyze the IQRD-based receivers and the subspace tracking algorithms.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:55 ,  Issue: 1 )