Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Swing-Up Control for a 3-DOF Gymnastic Robot With Passive First Joint: Design and Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Xin Xin ; Okayama Prefectural Univ., Okayama ; Kaneda, M.

This paper concerns a swing-up control problem for a three-link gymnastic planar robot in a vertical plane with its first joint being passive (unactuated) and the rest being active (actuated). The objectives of this paper are to: (1) design a controller under which the robot can be brought into any arbitrarily small neighborhood of the upright equilibrium point, where all three links of the robot remain in their upright positions; and (2) attain a global analysis of the motion of the robot under the controller. To tailor the energy-based control approach to achieve the aforementioned objectives, first, this paper considers the links 2 and 3 as a virtually composite link, and proposes a coordinate transformation of the angles of active joints. Second, this paper constructs a novel Lyapunov function based on the transformation, and devises an energy-based swing-up controller. Third, this paper carries out a global analysis of the motion of the robot under the controller, and establishes some conditions on control parameters for achieving the swing-up control objective. To validate the theoretical results obtained, this paper provides simulation results for a three-link robot with its mechanical parameters being obtained from a human gymnast.

Published in:

Robotics, IEEE Transactions on  (Volume:23 ,  Issue: 6 )