By Topic

Design and evaluation of a gravity compensation mechanism for a humanoid robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shirata, S. ; Tohoku Univ., Sendai ; Konno, A. ; Uchiyama, M.

Performance of a human size humanoid robot is strictly limited by performance of the motor. The progress of a motor has not been remarkable compared with the progress of electronics. Therefore, the great progress of the performance of the motor cannot be expected, at least in the present circumstances. In this paper, a gravity compensation mechanism is designed which is applicable to a general biped robot. The mechanism is expected to reduce the joint torque of the legs required to support the gravitational force of the whole body. A humanoid robot Saika-4 is equipped with the gravity compensation mechanism in the legs. To evaluate effectiveness of the gravity compensation mechanism, preliminary experiments are performed using the humanoid robot.

Published in:

Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on

Date of Conference:

Oct. 29 2007-Nov. 2 2007