By Topic

GP-UKF: Unscented kalman filters with Gaussian process prediction and observation models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jonathan Ko ; Dept. of Computer Science & Engineering, University of Washington, USA ; Daniel J. Kleint ; Dieter Fox ; Dirk Haehnelt

This paper considers the use of non-parametric system models for sequential state estimation. In particular, motion and observation models are learned from training examples using Gaussian process (GP) regression. The state estimator is an unscented Kalman filter (UKF). The resulting GP-UKF algorithm has a number of advantages over standard (parametric) UKFs. These include the ability to estimate the state of arbitrary nonlinear systems, improved tracking quality compared to a parametric UKF, and graceful degradation with increased model uncertainty. These advantages stem from the fact that GPs consider both the noise in the system and the uncertainty in the model. If an approximate parametric model is available, it can be incorporated into the GP; resulting in further performance improvements. In experiments, we show how the GP-UKF algorithm can be applied to the problem of tracking an autonomous micro-blimp.

Published in:

2007 IEEE/RSJ International Conference on Intelligent Robots and Systems

Date of Conference:

Oct. 29 2007-Nov. 2 2007