Cart (Loading....) | Create Account
Close category search window
 

Test-environment based on a team of miniature walking robots for evaluation of collaborative control methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Weissel, F. ; Univ. Karlsruhe (TH), Karlsruhe ; Huber, M.F. ; Hanebeck, U.D.

For the collaborative control of a team of robots, a set of well-suited high-level control algorithms, especially for path planning and measurement scheduling, is essential. The quality of these control algorithms can be significantly increased by considering uncertainties that arise, e.g. from noisy measurements or system model abstraction, by incorporating stochastic filters into the control. To develop these kinds of algorithms and to prove their effectiveness, obviously real- world experiments with real world uncertainties are mandatory. Therefore, a test-environment for evaluating algorithms for collaborative control of a team of robots is presented. This test-environment is founded on miniature walking robots with six degrees of freedom. Their novel locomotion concept not only allows them to move in a wide variety of different motion patterns far beyond the possibilities of traditionally employed wheel-based robots, but also to handle real-world conditions like uneven ground or small obstacles. These robots are embedded in a modular test-environment, comprising infrastructure and simulation modules as well as a high-level control module with submodules for pose estimation, path planning, and measurement scheduling. The interaction of the individual modules of the introduced test-environment is illustrated by an experiment from the field of cooperative localization with focus on measurement scheduling, where the robots that perform distance measurements are selected based on a novel criterion, the normalized mutual Mahalanobis distance.

Published in:

Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on

Date of Conference:

Oct. 29 2007-Nov. 2 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.