By Topic

A Kalman filter for robust outlier detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jo-Anne Ting ; Univ. of Southern California, Los Angeles ; Theodorou, E. ; Schaal, S.

In this paper, we introduce a modified Kalman filter that can perform robust, real-time outlier detection in the observations, without the need for manual parameter tuning by the user. Robotic systems that rely on high quality sensory data can be sensitive to data containing outliers. Since the standard Kalman filter is not robust to outliers, other variations of the Kalman filter have been proposed to overcome this issue, but these methods may require manual parameter tuning, use of heuristics or complicated parameter estimation. Our Kalman filter uses a weighted least squares-like approach by introducing weights for each data sample. A data sample with a smaller weight has a weaker contribution when estimating the current time step's state. We learn the weights and system dynamics using a variational Expectation-Maximization framework. We evaluate our Kalman filter algorithm on data from a robotic dog.

Published in:

Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on

Date of Conference:

Oct. 29 2007-Nov. 2 2007