By Topic

Feature selection for grasp recognition from optical markers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chang, L.Y. ; Carnegie Mellon Univ., Pittsburgh ; Pollard, N.S. ; Mitchell, T.M. ; Xing, E.P.

Although the human hand is a complex biomechanical system, only a small set of features may be necessary for observation learning of functional grasp classes. We explore how to methodically select a minimal set of hand pose features from optical marker data for grasp recognition. Supervised feature selection is used to determine a reduced feature set of surface marker locations on the hand that is appropriate for grasp classification of individual hand poses. Classifiers trained on the reduced feature set of five markers retain at least 92% of the prediction accuracy of classifiers trained on a full feature set of thirty markers. The reduced model also generalizes better to new subjects. The dramatic reduction of the marker set size and the success of a linear classifier from local marker coordinates recommend optical marker techniques as a practical alternative to data glove methods for observation learning of grasping.

Published in:

Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on

Date of Conference:

Oct. 29 2007-Nov. 2 2007