By Topic

Mobile robots global localization using adaptive dynamic clustered particle filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhibin Liu ; Tsinghua Univ., Beijing ; Zongying Shi ; Mingguo Zhao ; Wenli Xu

This article presents an adaptive dynamic clustered particle filtering method for mobile robot global localization. The posterior distribution of robot pose in global localization is usually multimodal due to the symmetry of the environment and ambiguous detected features. Moreover, the multimodal distribution of the posterior varies as the robot moves and observations are obtained. Considering these characteristics, we use a set of clusters of particles to represent the posterior. These clusters are dynamically evolved corresponding to the varying posterior by merging the overlapping clusters and splitting the diffuse clusters or those whose particles gather to some sub-clusters inside. Further, in order to improve computational efficiency without sacrificing estimation accuracy, a mechanism for adapting the sample size of clusters is proposed. The theoretical lower bound of the number of particles needed to limit the estimation error is derived, based on the central limit theorem in multidimensional space and the statistic theory of importance sampling (IS). Simulation results show the effectiveness of the proposed method, which is sufficient to achieve robust tracking of robot's real pose and meanwhile significantly enhance the computational efficiency.

Published in:

Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on

Date of Conference:

Oct. 29 2007-Nov. 2 2007