By Topic

An algorithm for extrinsic parameters calibration of a camera and a laser range finder using line features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ganhua Li ; Nat. Univ. of Defense Technol., Xi''an ; Yunhui Liu ; Li Dong ; Xuanping Cai
more authors

This paper presents an effective algorithm for calibrating the extrinsic parameters between a camera and a laser range finder whose trace is invisible. On the basis of an analysis of three possible features, we propose to design a right-angled triangular checkerboard and to employ the invisible intersection points of the laser range finder's slice plane with the edges of the checkerboard to set up the constraints equations. The extrinsic parameters are then calibrated by minimizing the algebraic errors between the measured intersections points and their corresponding projections on the image plane of the camera. We compared our algorithm with the existing methods by both simulations and the real data of a stereo measurement system. The simulation and experimental results confirmed that the proposed algorithm can yield more accurate results.

Published in:

Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on

Date of Conference:

Oct. 29 2007-Nov. 2 2007