By Topic

A methodology for timing model characterization for statistical static timing analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhuo Feng ; Department of ECE, Texas A&M University, College Station, 77843, U.S.A ; Peng Li

While the increasing need for addressing process variability in sub-90 nm VLSI technologies has sparkled a large body of statistical timing and optimization research, the realization of these techniques heavily depends on the availability of timing models that feed the statistical timing analysis engine. To target at this critical but less explored territory, in this paper, we present numerical and statistical modeling techniques that are suitable for the underlying timing model characterization infrastructure of statistical timing analysis. Our techniques are centered around the understanding that, while the widening process variability calls for accurate non-first-order timing models, their deployment requires well-controlled characterization techniques to cope with the complexity and scalability. We present a methodology by which timing variabilities in interconnects and nonlinear gates are translated efficiently into quadratic timing models suitable for accurate statistical timing analysis. Specific parameter reduction techniques are developed to control the characterization cost that is a function of number of variation sources. The proposed techniques are extensively demonstrated under the context of logic stage timing characterization involving interactions between logic gates and interconnects.

Published in:

2007 IEEE/ACM International Conference on Computer-Aided Design

Date of Conference:

4-8 Nov. 2007