By Topic

A performance-driven QBF-based iterative logic array representation with applications to verification, debug and test

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Many CAD for VLSI techniques use time-frame expansion, also known as the iterative logic array representation, to model the sequential behavior of a system. Replicating industrial-size designs for many time-frames may impose impractically excessive memory requirements. This work proposes a performance-driven, succinct and parametrizable quantified Boolean formula (QBF) satisfiability encoding and its hardware implementation for modeling sequential circuit behavior. This encoding is then applied to three notable CAD problems, namely bounded model checking (BMC), sequential test generation and design debugging. Extensive experiments on industrial circuits confirm outstanding run-time and memory gains compared to state-of-the-art techniques, promoting the use of QBF in CAD for VLSI.

Published in:

Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM International Conference on

Date of Conference:

4-8 Nov. 2007