Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

High-Performance Bound-to-Continuum Quantum-Cascade Lasers for Broad-Gain Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

Based on the bound-to-continuum active region design, we shall present a high performance continuous-wave (CW) quantum-cascade laser. In contrast to high performance lasers based on a two-phonon resonance transition and a narrow linewidth (< 165 cm-1), the device presented here exhibits a spontaneous emission full-width at half-maximum as large as 295 cm-1. Thus, such devices are very suitable for broadband tuning. At 30degC, it shows a maximum output power and slope efficiency of 188 mW and 500 mW/A, as well as a threshold current density of only 1.79 kA/cm2. Furthermore, at this temperature, the device demonstrates an internal differential quantum efficiency of 71% and a wall plug efficiency of 2.0%. The maximum CW operation temperature reached is 110degC. A thermal resistance of 4.3 K/W was attained by epi-down mounting on diamond submounts. The waveguide losses of 14 cm-1 are explained by intersubband absorption in addition to free-carrier absorption.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:44 ,  Issue: 1 )