By Topic

Modeling Dissimilar Optical Fiber Splices With Substantial Diffusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jian Luo ; Clemson Univ., Clemson

Optical losses of dissimilar fiber fusion splices are modeled using a combination of diffusion simulation and beam propagation method; open-source codes are provided. It is demonstrated that an optimal amount of diffusion is required to achieve the minimum splice loss. Additional annealing beyond the optimal level is detrimental. Furthermore, oscillation of splice loss with the geometrical parameters of the heat zone due to an optical interference effect is revealed, which can be intentionally utilized to reduce dissimilar fiber splice losses. Understanding these diffusion-related splice loss mechanisms is important for splicing process optimization, as well as design of fusion splicers and novel postsplicing heat treatment devices.

Published in:

Lightwave Technology, Journal of  (Volume:25 ,  Issue: 11 )