Cart (Loading....) | Create Account
Close category search window
 

Key Enabling Technologies for Optical–Wireless Networks: Optical Millimeter-Wave Generation, Wavelength Reuse, and Architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhensheng Jia ; Georgia Inst. of Technol., Atlanta ; Jianjun Yu ; Ellinas, G. ; Gee-Kung Chang

The integration of optical and wireless systems is considered to be one of the most promising solutions for increasing the existing capacity and mobility as well as decreasing the costs in next-generation optical access networks. In this paper, several key enabling technologies for hybrid optical-wireless access networks are described, including optical millimeter-wave (mm-wave) generation, upconversion, and transmission in a downlink direction, and full-duplex operation based on wavelength reuse by using a centralized light source in an uplink direction. By employing these enabling technologies, we design and experimentally demonstrate an optical-wireless testbed that is simultaneously delivering wired and wireless services in the integrated optical-wireless and wavelength-division-multiplexing passive-optical-network access networks. The actual applications consisting of 270-Mb/s uncompressed standard-definition TV signal and 2.5-Gb/s data channels for downstream are successfully transmitted over a 25-km fiber and a 10.2-m indoor wireless link with less than a 1.5-dB power penalty. The results show that this integrated system is a practical solution to deliver superbroadband information services to both stationary and mobile users.

Published in:

Lightwave Technology, Journal of  (Volume:25 ,  Issue: 11 )

Date of Publication:

Nov. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.