By Topic

Performance Evaluation of a Novel Converged Architecture for Digital-Video Transmission Over Optical Wireless Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Neda Cvijetic ; Univ. of Virginia, Charlottesville ; Stephen G. Wilson ; Radivoje Zarubica

A robust channel coding architecture for multigigabit-per-second digital-video transmission over the optical wireless channel is introduced and evaluated. The proposed scheme combines low-density parity-check coding with channel interleaving to improve the transmission over turbulent temporally correlated optical wireless channels while satisfying real-time video delay constraints. Frame error rates of the presented code design are evaluated via simulation for intensity-modulation/direct-detection optical wireless links in both lognormal- and Rayleigh-fading channels. Results indicate that the performance of the proposed system is effective across a large range of atmospheric turbulence strengths and achieves significant temporal diversity in moderately long (10 ms) temporal correlation times while satisfying a 0.3-s real-time delay constraint. Moreover, the proposed design is shown to outperform the Reed-Solomon codes prevalent in the legacy fiber and wireless digital-television distribution systems.

Published in:

Journal of Lightwave Technology  (Volume:25 ,  Issue: 11 )