Cart (Loading....) | Create Account
Close category search window
 

Augmented Stable Fuzzy Control for Flexible Robotic Arm Using LMI Approach and Neuro-Fuzzy State Space Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chatterjee, A. ; Univ. of Electro-Commun., Tokyo ; Chatterjee, R. ; Matsuno, F. ; Endo, T.

Designing the control strategy for a flexible robotic arm has long been considered a complex problem as it requires stabilizing the vibration simultaneously with the primary objective of position control. A stable state-feedback fuzzy controller is proposed here for such a flexible arm. The controller is designed on the basis of a neuro-fuzzy state-space model that is successfully trained using the experimental data acquired from a real robotic arm. The complex problem of solving stability conditions is taken care of by recasting them in the form of linear matrix inequalities and then solving them using a popular interior-point-based method. This asymptotically stable fuzzy controller is further augmented to provide enhanced transient performance along with maintaining the excellent steady-state performance shown by the stable control strategy. The controller hence designed has been successfully implemented for a real robotic arm to operate over a long angular range of 180 with several payload conditions and, for situations where the system is operated for a long range and with a large variation in payload conditions, it could successfully outperform the recently proposed proportional derivative and strain controller.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:55 ,  Issue: 3 )

Date of Publication:

March 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.