By Topic

Shunt Active-Power-Filter Topology Based on Parallel Interleaved Inverters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In this paper, an interleaved active-power-filter concept with reduced size of passive components is discussed. The topology is composed of two pulsewidth-modulation interleaved voltage-source inverters connected together on the ac line and sharing the same dc-link capacitor. The advantages of the proposed approach are as follows: 1. significant reduction in the linkage inductors' size by decreasing the line-current ripple due to the interleaving; 2. reduction of the switching stress in the dc-link capacitor, due to the shared connection; and 3. more accurate compensation for high-power applications, because the power sharing allows one to use a higher switching frequency in each inverter. This paper analyzes the design of the passive components and gives a practical and low-cost solution for the minimization of the circulation currents between the inverters, by using common-mode coils. Several simulation results are discussed, and experimental results with a three-phase 10-kVA 400-V unit are obtained to validate the theoretical analysis.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:55 ,  Issue: 3 )