By Topic

Modeling of Tuning of Microresonator Filters by Perturbational Evaluation of Cavity Mode Phase Shifts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hiremath, K.R. ; Univ. of North Carolina at Charlotte, Charlotte ; Hammer, M.

Microresonator filters, which are realized by evanescent coupling of circular cavities with two parallel bus waveguides, are promising candidates for applications in dense wavelength-division multiplexing. Tunability of these filters is an essential feature for their successful deployment. In this paper, we present a framework for modeling of tuning of the microresonators by changes in their cavity core refractive index. Using a reciprocity theorem, a perturbational expression for changes in the cavity propagation constants due to slight modifications of the cavity core refractive index is derived. This expression permits us to analytically calculate shifts in the spectral response of the 2-D resonators. Comparisons of the resultant shifts and spectra with direct simulations based on a coupled mode theory show satisfactory agreement.

Published in:

Lightwave Technology, Journal of  (Volume:25 ,  Issue: 12 )