By Topic

Nonuniform Arrayed Waveguide Gratings for Flat-Top Passband Transfer Function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gholipour, A. ; Tehran Univ., Tehran ; Faraji-Dana, R.

The passband frequency response of an arrayed waveguide grating (AWG) is improved for better performance in wavelength-division multiplexing applications. Using the lengths of array arms as optimization variables, an optimization method is employed to obtain an ideal flat-top transfer function. Two different definitions of the desired transfer function to achieve the ideal flat-top response are given, and their results are compared. Rigorous mathematical derivation of the transfer function and definition of suitable objective functions generate closed-form expressions for the gradient vector of the objective function with respect to the optimization variables, thus enabling the implementation of a robust quasi-Newton optimization algorithm. This, in turn, provides accurate results and fast convergence, despite a large number of optimizing variables. It is shown that the optimized nonuniform AWG will have a flat passband with a broad bandwidth that is 2.3 times larger than that of an ordinary uniform AWG.

Published in:

Lightwave Technology, Journal of  (Volume:25 ,  Issue: 12 )