By Topic

Fair Resource Allocation in Wireless Networks Using Queue-Length-Based Scheduling and Congestion Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Eryilmaz, A. ; Ohio State Univ., Columbus ; Srikant, R.

We consider the problem of allocating resources (time slots, frequency, power, etc.) at a base station to many competing flows, where each flow is intended for a different receiver. The channel conditions may be time-varying and different for different receivers. It is well-known that appropriately chosen queue-length based policies are throughput-optimal while other policies based on the estimation of channel statistics can be used to allocate resources fairly (such as proportional fairness) among competing users. In this paper, we show that a combination of queue-length-based scheduling at the base station and congestion control implemented either at the base station or at the end users can lead to fair resource allocation and queue-length stability.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:15 ,  Issue: 6 )