By Topic

Key management issues in wireless sensor networks: current proposals and future developments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lee, J.C. ; Univ. of British Columbia, Vancouver ; Leung, V.C.M. ; Wong, K.H. ; Jiannong Cao
more authors

Key management has remained a challenging issue in wireless sensor networks (WSNs) due to the constraints of sensor node resources. Various key management schemes that trade off security and operational requirements have been proposed in recent years. In this article, we first examine the security and operational requirements of WSNs and then review five key management protocols: Eschenauer, Du, LEAP, SHELL, and Panja. Eschenauer's scheme is a classical random key distribution scheme for WSNs. Du's scheme improves on Eschenauer's scheme by using key matrices. LEAP provides a highly flexible key management scheme using four types of keys. SHELL focuses on achieving high robustness, and Panja is optimized for hierarchical WSNs. LEAP, SHELL, and Panja support cluster-based operations and are more aligned with current trends as shown by the new standards, IEEE 802.15.4b and the ZigBee "enhanced" standard. Future developments likely will incorporate the features of LEAP and adjustable robustness enhancements from Eschenauer or Du; extremely security-critical applications may benefit from restructuring SHELL to ease implementation and maintenance. Developments for extremely large WSNs should consider improving Panja's scheme due to its hierarchical scalability feature.

Published in:

Wireless Communications, IEEE  (Volume:14 ,  Issue: 5 )