By Topic

Pulsed X-Ray and Continuous Gamma Radiation Effects on Erbium Doped Optical Fibers Properties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
B. Tortech ; Lab. Hubert Curien, Saint Etienne ; A. Gusarov ; M. Van Uffelen ; J. Bisutti
more authors

The radiation responses of two erbium doped fibers are studied in harsh pulsed X-ray and gamma ray environments. Their transient and continuous responses were measured in the near-infrared spectral range. The online transmission measurements of radiation-induced attenuation (RIA) show no detectable change in the 1450-1600 nm erbium-ions-absorption domain, whereas the background losses from the silica-based host matrix are strongly increased by the creation of point defects. For both harsh environments, the rare-earth doped samples exhibit higher RIA levels compared than standard passive optical fibers. From all our measurements, we proposed that the main contribution to the induced losses is due to the radiation-induced changes of the host matrix rather than changes related to erbium ions. Photo-luminescence analyses confirm the generation of NBOHC in erbium doped fibers and suggest the existence of energy transfer between the radiation-induced point defects and the Er3+ ions.

Published in:

IEEE Transactions on Nuclear Science  (Volume:54 ,  Issue: 6 )