By Topic

Spectral Efficiency Study of QC-CHPCs in Multirate Optical CDMA System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cheng-Yuan Chang ; Nat. Chung-Hsing Univ., Taichung ; Hung-Ta Chen ; Guu-Chang Yang ; Kwong, W.C.

Quadratic-congruence carrier-hopping prime codes (QC-CHPCs) with zero autocorrelation sidelobes, cross-correlation values of at most two, and expanded cardinality were recently constructed for wavelength-time "multicode-keying" optical code division multiple access (O-CDMA) for improved data throughput and code obscurity. To support multimedia services with different discrete bit-rate requirements, "multiple-length" QC-CHPCs are constructed algebraically in this paper. In contrary to conventional single-length codes, our analysis shows that the performance of these multiple-length codes improves as the code length decreases, thus supporting services prioritization in O-CDMA. Moreover, the relationship of the normalized spectral efficiency (NSE) and code lengths of the multiple-length QC-CHPCs is studied. Our results show that the NSE improves as the number of simultaneous users with short code matrices increases, which, however, decreases the total number of simultaneous users in the system. The choice of which code-length distribution to use depends on whether system efficiency or total number of simultaneous users is more important.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:25 ,  Issue: 9 )