By Topic

Adaptive Dynamic Surface Control for Stabilization of Parametric Strict-Feedback Nonlinear Systems With Unknown Time Delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sung Jin Yoo ; Yonsei Univ., Seoul ; Jin Bae Park ; Yoon Ho Choi

The robust stabilization method via the dynamic surface control (DSC) is proposed for uncertain nonlinear systems with unknown time delays in parametric strict-feedback form. That is, the DSC technique is extended to state time delay nonlinear systems with linear parametric uncertainties. The proposed control system can overcome not only the problem of ldquoexplosion of complexityrdquo inherent in the backstepping design method but also the uncertainties of the unknown time delays by choosing appropriate Lyapunov-Krasovskii functionals. In addition, we prove that all the signals in the closed-loop system are semiglobally uniformly bounded. Finally, an example is provided to illustrate the effectiveness of the proposed control system.

Published in:

Automatic Control, IEEE Transactions on  (Volume:52 ,  Issue: 12 )