By Topic

Geometry and Strain Dependence of the Proton Radiation Behavior of MuGFET Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

The proton irradiation effects on n-MuGFET devices with three different geometries (single fin, wide fin and multiple fin) are studied. Also, the effect of tensile strain in the fin on the radiation behavior is investigated. A fundamental difference in the radiation behavior between the non-strained and the strained devices is found. The degradation of the strained devices is most affected by the mobility decrease of the backside transistor. The non-strained devices show a much lesser back gate mobility degradation. For these devices the creation of positive oxide traps is dominant. This shifts the onset of the back channel to lower gate voltages, inducing a transconductance increase at intermediate gate voltages. This effect is less pronounced for single fin MuGFETs. At higher gate voltage, the transconductance decreases for the strained and increases for the non-strained transistors.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:54 ,  Issue: 6 )