Cart (Loading....) | Create Account
Close category search window
 

Radiation Tolerance of Nanocrystal-Based Flash Memory Arrays Against Heavy Ion Irradiation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Cester, A. ; Dipt. di Ing. del''Inf., Univ. di Padova, Padova ; Wrachien, N. ; Gasperin, A. ; Paccagnella, A.
more authors

We present new results on heavy-ion irradiation of nanocrystal non-volatile addressable memory arrays. We show that the effects of a single ion hit are negligible on these devices due to the discrete nature of the storage sites. We estimate that, in order to observe an appreciable threshold voltage shift, at least three to four ion hits are needed. Despite several cells experiencing multiple hits they are still functional after the irradiation, showing no changes on the retention characteristics. These results highlight an outstanding improvement of the nanocrystal technology over the conventional floating gate memories in terms of radiation tolerance, which are encouraging for a potential application in radiation harsh environments.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:54 ,  Issue: 6 )

Date of Publication:

Dec. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.