By Topic

Radiation Tolerance of Nanocrystal-Based Flash Memory Arrays Against Heavy Ion Irradiation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Cester, A. ; Dipt. di Ing. del''Inf., Univ. di Padova, Padova ; Wrachien, N. ; Gasperin, A. ; Paccagnella, A.
more authors

We present new results on heavy-ion irradiation of nanocrystal non-volatile addressable memory arrays. We show that the effects of a single ion hit are negligible on these devices due to the discrete nature of the storage sites. We estimate that, in order to observe an appreciable threshold voltage shift, at least three to four ion hits are needed. Despite several cells experiencing multiple hits they are still functional after the irradiation, showing no changes on the retention characteristics. These results highlight an outstanding improvement of the nanocrystal technology over the conventional floating gate memories in terms of radiation tolerance, which are encouraging for a potential application in radiation harsh environments.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:54 ,  Issue: 6 )