Cart (Loading....) | Create Account
Close category search window
 

Quantum Mechanical Description of Displacement Damage Formation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Beck, M.J. ; Dept. of Phys. & Astron., Vanderbilt Univ., Nashville, TN ; Hatcher, R. ; Schrimpf, R.D. ; Fleetwood, D.M.
more authors

Atomic-scale processes during displacement damage formation have been previously studied using molecular dynamics (MD) calculations and empirical potentials. Low-energy displacements (1 keV) are characterized by a high cross-section for producing secondary knock-on atoms and damage clusters, and determine the threshold displacement energy (an important parameter in NIEL calculations). Here we report first-principles, parameter-free quantum mechanical calculations of the dynamics of low-energy displacement damage events. We find that isolated defects formed by direct displacements result from damage events of les100 eV. For higher energy events, the initial defect profile, which subsequently undergoes thermal annealing to give rise to a final stable defect profile, is the result of the relaxation and recrystallization of an appreciable volume of significantly disordered and locally heated crystal surrounding the primary knock-on atom displacement trajectory.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:54 ,  Issue: 6 )

Date of Publication:

Dec. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.