By Topic

Quantum Mechanical Description of Displacement Damage Formation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
M. J. Beck ; Dept. of Phys. & Astron., Vanderbilt Univ., Nashville, TN ; R. Hatcher ; R. D. Schrimpf ; D. M. Fleetwood
more authors

Atomic-scale processes during displacement damage formation have been previously studied using molecular dynamics (MD) calculations and empirical potentials. Low-energy displacements (1 keV) are characterized by a high cross-section for producing secondary knock-on atoms and damage clusters, and determine the threshold displacement energy (an important parameter in NIEL calculations). Here we report first-principles, parameter-free quantum mechanical calculations of the dynamics of low-energy displacement damage events. We find that isolated defects formed by direct displacements result from damage events of les100 eV. For higher energy events, the initial defect profile, which subsequently undergoes thermal annealing to give rise to a final stable defect profile, is the result of the relaxation and recrystallization of an appreciable volume of significantly disordered and locally heated crystal surrounding the primary knock-on atom displacement trajectory.

Published in:

IEEE Transactions on Nuclear Science  (Volume:54 ,  Issue: 6 )