Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Distributed Arbitrary Segment Trees: Providing Efficient Range Query Support over Public DHT Services

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xinuo Chen ; Univ. of Warwick, Coventry ; Jarvis, S.A.

In this paper we define a Distributed Arbitrary Segment Tree (DAST), a distributed tree-like structure that layers the range query processing mechanism over public Distributed Hash Table (DHT) services. Compared with traditional segment trees, the arbitrary segment tree used by a DAST reduces the number of key-space segments that need to be maintained, which in turn results in fewer query operations and lower overheads. Moreover, considering that range queries often contain redundant entries that the clients do not need, we introduce the concept of accuracy of results (AoR) for range queries. We demonstrate that by adjusting AoR, the DHT operational overhead can be improved. DAST is implemented on a well-known public DHT service (OpenDHT) and validation through experimentation and supporting simulation is performed. The results demonstrate the effectiveness of DAST over exiting methods.

Published in:

Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007. IEEE 18th International Symposium on

Date of Conference:

3-7 Sept. 2007